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Kolmogorov’s refined similarity hypothesis (RSH) is tested in high resolution numerical simulations of
forced three-dimensional homogeneous turbulence. High Reynolds numbers are achieved by using hypervis-
cous dissipation (—1)"*!A* (h=8) instead of Newtonian (A =1) dissipation. It is found that, in the inertial
range, the RSH is reasonably well satisfied for low order moments with noticeable systematic corrections for
higher order moments. Within the constraints imposed by the use of hyperviscosity our data nearly eliminate
trivial kinematic dependencies between longitudinal velocity differences and the energy dissipation rate thus

helping to reveal the true dynamical nature of the RSH.

PACS number(s): 47.27.Ak, 47.27.Gs, 47.27.Jv

One of the most interesting properties of fully developed
turbulence is small scale intermittency which manifests itself
through the scale dependence of the probability distribution
function (PDF) ZAAu, /r'®) of longitudinal velocity differ-
ences (Au,=[u(x+r)—u;(x)]r;/r). In order to take ac-
count of this intermittent behavior, Kolmogorov [1] intro-
duced the refined similarity hypothesis (RSH) which relates
velocity differences Au, and the locally averaged energy dis-
sipation rate

£00= [ F-pEmay, (1)

where &(y) is the local energy dissipation rate and F, is a
low-pass spatial filter with scale r and normalized,
JF,(x)d’x=1. The RSH states that the joint one-point PDF
of Au, and &, has the form

‘ Au, ]
%Au,,&):@u(V,E W).@g{&,) (2)

and that, in the inertial range, the PDF &, (V,) is indepen-
dent of scale and Reynolds number. The RSH is the basis of
nearly all existing cascade models of turbulence (see, e.g.,
[2]).

Recently, the RSH was independently checked experi-
mentally by four groups [3—6] all concluding that, on the
level of the first conditional moment, the RSH has solid ex-
perimental support, i.e., the conditional average of
(|V,||&,) is relatively independent of &, . In all these works,
a one-dimensional surrogate of real dissipation was used and
local averaging of & was understood as one-dimensional av-
erages. It was suggested in [7] that at least part of the ob-
served correlations between Au, and &, come from the mea-
surement procedures that emphasize the kinematic
dependence between these two quantities. Thoroddsen [8]
attempts to verify the RSH by eliminating kinematic depen-
dencies by using pseudodissipation defined via the transverse
velocity component. It was suggested in [8] that with this
definition of the dissipation rate the validity of the RSH is
questionable. Existing numerical simulations [9,10] give
only partial support of the RSH, but unfortunately employed
many of the same simplifications to calculate &, as used in

1063-651X/96/53(1)/21(4)/$06.00 53

experiments [with either the one-dimensional pseudodissipa-
tion 15v(Ju/dx)? or anisotropic one-dimensional local aver--
aging being used]. Recent numerical simulations [11] aimed
to eliminate kinematic factors but give only weak support of
the RSH.

In this work, we present evidence supporting the RSH at
least at the level of low order moments that is free from the
kinematic constraints discussed above. In previous works
[12-14] we have already demonstrated that for the same
numerical resolution, we can effectively increase the extent
of the inertial range of three-dimensional turbulence by an
order of magnitude by using alternative forms of dissipation.
Some evidence was given that three-dimensional inertial-
range dynamics is relatively independent of the form of the
hyperviscosity, although it may depend on the nature of the
force. In this Rapid Communication, we address the problem
of validation of the RSH.

The hyperviscosity-modified Navier-Stokes equations are

8,u,~+uj6'ju,~=—3ip+(—1)h+1VhAhu,»+fi, 3)
where the pressure p is calculated from the incompressibility
condition J;u;=0. We include a white-in-time Gaussian
force which is nonzero only at some characteristic scale
k;=1 and a hyperviscosity dissipation (as in [12] we use
h=8). The various characteristics of the statistically station-
ary state in this case can be found in [12]. We solve (3) using
a pseudospectral parallel code and perform two series of runs
with resolutions (N=128)3 and 2563 for a periodic box with
size L =21 in each direction. The total averaging times are
200 and 30 in units 79=~1/v,,,,, respectively. The Reynolds
number [12] is R\ ~50(k,/k;)*>, where k, is the wave num-
ber where k2E(k) is maximum (k,~41,82 for 128 and
256°). The hyperviscous energy dissipation rate is

&= v, A", A"y, @

The local space average in (1) is performed as a convolution
in Fourier space by using an isotropic three-dimensional
“top-hat” low-pass filter whose Fourier transform is
F,(K)=3(siné—¢& cos§)/& with £=r|k|/2. This filter exactly
corresponds to the definition of local space averaging used
by Kolmogorov [1]. The midpoint of the velocity difference
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FIG. 1. Joint PDFs between [(a),(b)] Au, /r'"? and &°; [(c),(d)]
V, and log,,&, . Means are subtracted and variables are normalized
by their variances. [(a),(c)] k,=4 and resolution 1283. [(b),(d)]
k.=32 and resolution 256°. The total number of points is ~10'°.
Curves show isocontours of log;7” in increments of 0.4.

Au, coincides with the center of the spherical averaging cell
of radius r/2. The definition of dissipation (4) and this mea-
surement procedure nearly eliminate the possible kinematic
dependencies discussed above. The measurements are car-
ried out for r= w/k_ with k,=4,8,. .. ,N/8 which correspond
to scales inside of the inertial range [12].

In Fig. 1 we plot the joint probability distribution func-
tions Z,(Au,/r'?, 53/3) [Figs. 1(a) and 1(b)] and
AV, ,logy#%,) [Figs. 1(c) 1(d)] for two spatial resolutions
and filter sizes: k;=41,82 and k.=4,32. While isocontours
of &7, indicate a noticeable correlation of velocity differences
and the dissipation rate, isocontours of &° show that V, and
log,o%, are nearly statistically independent in accordance
with the RSH. To quantify this we calculate conditional mo-
ments of V, conditioned on &,. Various moments are plotted
in Figs. 2 and 3 as functions of (log;&,— (logy&,))/ o,
(o? is the variance of log;y&,). The curves for different r
and k4 nearly collapse using the above scaling. These figures
show that the conditional moments of V, are only weakly
dependent on log;y&, and the RSH in the form (2) is ap-
proximately satisfied. The conditional mean (V,|&,) is nearly
equal. to zero in contrast with the results of [6]. The condi-
tional variance (V2|&,)~2.2 is close to the results of [3] and
[10]. The conditional flatness [Fig. 2(b)] and conditional
sixth order moments [Fig. 2(c)] are only weakly dependent
on log;,&%, and are close to Gaussian values (3 and 15, re-
spectively) in agreement with [3,6,10]. The first and third
conditional moments of |V,| normalized by conditional vari-
ances [Figs. 3(a) and 3(b)] are spectacularly independent of
log,0%, (partially due to the normalization by (V?|&,)). The
conditional skewness [Fig. 3(c)] has a substantially stronger
dependence on log;,&%, . Also in accordance with Kolmogor-
ov’s 4/5 law [3] (V?) is nearly equal to —4/5.
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FIG. 2. (a) Conditional averages of (Vflgr); (b) conditional
flatness (V¥ Z,)/(V?|&,)% (c) conditional sixth order moments
(V8&.)/(V?&,)>. Curves are obtained for 128> and 256 resolu-
tions with k.=4,8,16 and k.=4,8,16,32, respectively. All curves
are superimposed with the dissipation rate plotted as
(log10&, — (log10&,))/ o, (o is the variance of log;y%,).
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FIG. 3. (a) Conditional averages of {|V,||&,)/(V?|&,)'?; (b)
conditional third order moments (|V,|*|&,)/(V?|&,)*% (c) condi-
tional skewness (V2|&,)/(V?|&,)*2. Curves are obtained for 128°
and 256> resolutions with k.,=4,8,16 and k.=4,8,16,32, respec-
tively. All curves are superimposed with the dissipation rate plotted
as (logy o, — (log1o%,))/ o, (02 is the variance of log;y&,).
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FIG. 4. (a) PDFs of log;&, ; log47” is plotted as a function of
(log1o&,— (log;o&,))/ o, . (b) Variance &2 of In&, as a function of
filter size In(r); the dashed line is G2« —0.15 In(r). (c) Flatness of
velocity differences Au, and V, as a function of filter size In(7). (d)
Sixth order moments (Au®)/(Au?)* and (V®)/(V?)? as a function
of filter size In(r). () Correlation coefficients p between |Au,| and
&Y% and p' between |V,| and log;y%, as functions of filter size
In(r). The measurements are performed for 128> and 256> resolu-
tions and k.=4,8,16 and k.=4,8,16,32, respectively. All data are
superimposed in (a). In (b)—(e) stars represent data for 256> reso-
lution and circles represent data for 128> resolution.

In Figs. 4(a) and 4(b) we plot the PDFs of log;(&, as a
function of (logo&,— (logy&,))/o,, superimposed for dif-
ferent r and Reynolds numbers. All curves nearly collapse in
the core region with the variance ¢ of In&, proportional to
—u In(r) (here u~0.15 is called the intermittency expo-
nent). The PDFs of log,%, are quite close to Gaussian. With
our data set it is possible to obtain moments (&) in the
range —2<n=<4.5 and within this range the PDF of &, may
be considered log-normal. If the flatness and sixth moments
of Au, grow when r decreases the corresponding quantities
for V, grow more slowly and may even slightly decrease
when R, increases [see Figs. 4(c) and 4(d)]. Note that ac-
cording to the RSH the correlation coefficient p between
|Au,| and & should not be equal to 1. Indeed from (2),
p=(1-A)"(B—A)" with A=(&")2/(£**) and B
=(V3/{|V,|)?. From the data plotted in Figs. 3 and 4,
A~1-5?%/9, B~1.56, and p~0.455,. In accord with the
RSH, the correlation coefficient p’ between |V,| and
logy&, is close to zero [see Fig. 4(e)].

If the PDFs of log o, and V, are close to Gaussian and
the RSH holds, isocontours of &7, will have the form of
circles. That is not exactly so, as may be seen from Fig. 1.
Our data not only allow us to validate the RSH on the level
of lower order moments, but also reveal systematic correc-
tions to the RSH. Indeed according to the results plotted in
Fig. 2(c) (VO|&,)xa(1—b In&,/5,) where a~160 and
b~1/15. That leads to systematic corrections to (Au®)
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FIG. 5. Joint PDFs between (a) In%, and In&,, (b)

In(%, /&) and In&, . Means are subtracted and variables are nor-
malized by their variances. k.=16 and k;=41. Curves show isoc-
ontours of log;;7” in increments of 0.4. Dotted curves are condi-
tional averages of abscissas conditioned on ordinates and dashed
curves are vice versa. log;o-log;o plots of (c) conditional averages
of {F,|&,)/(H,) as a function of &,/(&,); dashed curve corre-
sponds to &2 (d) conditional averages of { £,|.%,)/(&,) as a func-
tion of .%, /{.%,); dashed curve corresponds to .%>>. Curves are
obtained for 128> and 256> resolutions with k.=4,8,16 and
k.=4,8,16,32, respectively. All curves are superimposed.

or?(&®) with a~2—b/&, and the RSH is, strictly speaking,
violated. The situation is even worse for higher order mo-
ments. We do not know whether these systematic corrections
to higher order moments are universal and/or hyperviscosity
independent.

One may expect that the RSH should not only be appli-
cable to velocity differences, but to other inertial range quan-
tities as well. To illustrate this idea we measure the joint
probability distribution of subgrid-scale kinetic energy %,
and &,. We define %, as %,=4(u;u;),— (u;),(u;),] with
the same local-averaging procedure as in (1) and with the
same top-hat filter F,. We have checked that our results are
relatively independent on the form of filter. According to the
RSH we may expect that

_ %r o
%%ﬂffrF?y;(m)@Aé)- 5)

In Fig. 5(a) we plot AIn%,,In&,) for k.,=16 and
ky=41. A strong correlation between %, and &, is ob-
served. It turns out that the probability distribution of .7, is
also approximately log-normal with 6-,2 , the variance of
In%,, nearly equal to 6',2, the variance of In&, indepen-
dently of k. and k. Therefore, if the RSH in the form (5) is
correct the isocontours of Z(In(.%, / &%?),In&,) should have
the form of circles. That this is indeed nearly so can be seen
from Fig. 5(b).
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For further analysis it is convenient to introduce the vari-
ables ¢=(In&,—(In&,))/&, and 7=(In%,—{(In%,))/o,
with o,~¢,. We verified that, in these variables, the joint
PDF of %, and &, in the inertial range has the simple ap-
proximate form

£+ cén
2(1-c?)  (1—c?) ©)

A, ,&,)xexp| —

independently of k. and k,. Here (£2)=(7*)=1 and
c=(£mn) is the correlation coefficient. It is clear from (6) that
£ and n—c¢ or equivalently %, /&; and &, are independent
variables. The RSH in the form (5) holds provided c=2/3;
this turns out to be approximately true according to our data.
It follows from (6) that the conditional averages (7|£)=cé¢
and (&|n)=c7. Using the fact that ¢ and 7 are nearly
Gaussian variables and that o,~ &, we obtain

(FEN< &P, (E|Hy=H2. @)

The conditional averages (%,|&,) and (&,|.%,) are plotted
in Figs. 5(c) and Fig. 5(d), respectively. It may be seen that
(7) is approximately satisfied independently of k. and k,
[with the first expression in Eq. (7) that directly tests the
RSH validity with noticeably higher accuracy]. The results
(7) are in good agreement with recent experimental findings
of Meneveau and O’Neil [15]. Thus, the RSH for .%, is
approximately valid in the form (5); it cannot be inverted in
the sense that (&,|.%,) does not scale as .7%>2.

We also checked that the RSH holds for other inertial
range quantities such as locally averaged strain and vorticity
that are defined as (S;)),=[(du;+d;u;)/2], and (w)),
= g;;x9;(uy), . Here the same filtering procedure is assumed.
Precisely, we verified that the joint PDF of &, and
S?=(S:j),(S;;), has the form (5): Ps(S2/E*)PA &,). The
same decomposition is true for the joint PDF of &,
and locally averaged vorticity wf=(w,»),(w,-),: Z( wf/
EPYPLA&,). As in the case of subgrid-scale kinetic energy,
the RSH for large-scale strain and vorticity cannot be in-
verted.

In conclusion, we find that in the inertial range, the RSH
in the form (2) is reasonably well satisfied for low order
moments of velocity differences with noticeable systematic
corrections for higher order moments. We have also shown
that the RSH is as well applicable to other inertial range
quantities such as subgrid-scale kinetic energy, locally aver-
aged strain and vorticity. Our use of hyperviscosity and an
accurate averaging procedure allows us to nearly eliminate
kinematic dependencies between velocity differences and the
dissipation rate, thus helping to reveal the dynamical nature
of the RSH. On the other hand, our results also give more
confidence to the hypothesis that inertial-range dynamics is
relatively independent of the form of hyperviscosity.
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